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The exon junction complex (EJC) is deposited on mRNAs as a
consequence of splicing and influences postsplicing mRNA
metabolism. The Mago–Y14 heterodimer is a core component
of the EJC. Recently, the protein PYM has been identified as an
interacting partner of Mago–Y14. Here we show that PYM is a
cytoplasmic RNA-binding protein that is excluded from the
nucleus by Crm1. PYM interacts directly with Mago–Y14 by
means of its N-terminal domain. The crystal structure of the
Drosophila ternary complex at 1.9 Å resolution reveals that PYM
binds Mago and Y14 simultaneously, capping their heterodimer-
ization interface at conserved surface residues. Formation of this
ternary complex is also observed with the human proteins. Mago
residues involved in the interaction with PYM have been
implicated in nonsense-mediated mRNA decay (NMD). Consis-
tently, human PYM is active in NMD tethering assays. Together,
these data suggest a role for PYM in NMD.
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INTRODUCTION
The exon junction complex (EJC) is a multiprotein assembly
deposited by the spliceosome 20–24 nucleotides upstream of
mRNA exon–exon junctions (Le Hir et al, 2000). The EJC is
thought to provide a molecular link between splicing and
postsplicing mRNA metabolism by influencing mRNA export,
the efficiency of translation and mRNA stability (reviewed in
Le Hir et al, 2003). Several of the EJC components have been
identified to date and include the human proteins Y14, Mago,
RNPS1, REF/Aly, UPF3 and SRm160. Mago, Y14 and possibly
other EJC proteins remain associated with spliced mRNAs after
their export to the cytoplasm, providing a mark for exon

boundaries (Kim et al, 2001; Le Hir et al, 2001b; Lykke-Andersen
et al, 2001).

In mammals, the EJC also functions in nonsense-mediated
mRNA decay (NMD), a surveillance mechanism that degrades
mRNAs with premature translation termination codons when
present upstream of at least one exon boundary (reviewed in
Le Hir et al, 2003). In particular, the EJC proteins RNPS1, Y14 and
Mago have been shown to elicit NMD when tethered to an mRNA
reporter downstream of a stop codon (Lykke-Andersen et al, 2001;
Fribourg et al, 2003; Gehring et al, 2003). In Drosophila, Mago
and Y14 are essential for cell viability but are not involved in
NMD (Gatfield et al, 2003). Instead, Drosophila Mago and Y14
are essential for the localized translation of oskar mRNA during
embryonic development (Micklem et al, 1997; Newmark et al,
1997; Hachet & Ephrussi, 2001). The molecular mechanisms by
which Mago and Y14 are involved in different aspects of mRNA
metabolism are unknown.

We and others have previously reported the structure of the
Mago–Y14 heterodimer (Fribourg et al, 2003; Lau et al, 2003; Shi
& Xu, 2003). A significant portion of the Mago–Y14 surface is
lined by conserved residues, suggesting that they might be a site
for protein–protein interactions. One of the interacting partners
identified so far is the protein PYM (Forler et al, 2003). PYM, the
product of the fly wibg gene, is a conserved protein with an as yet
uncharacterized function and sharing no sequence similarity with
other proteins. To obtain molecular insights into the interaction
of Mago–Y14 and PYM, we have characterized the biochemical
properties of the ternary complex and determined its structure at
1.9 Å resolution.

RESULTS AND DISCUSSION
Mago–Y14 interacts with the N-terminal domain of PYM
Full-length Drosophila melanogaster (Dm) PYM (residues 1–207)
interacts with Mago–Y14 directly, as detected by pull-down
experiments using recombinant proteins (Fig 1A). From previous
structural studies (Fribourg et al, 2003; Lau et al, 2003; Shi &
Xu, 2003), Mago is known to be a single structural unit, whereas
Y14 folds into three distinct domains (the N-terminal domain,
the RNA-binding-like domain (RBD) and a C-terminal low-
complexity region). The C-terminal region of Dm Y14 is not
required for Mago binding (Fribourg et al, 2003; Lau et al, 2003)
nor for PYM binding (Fig 1A, lane 1). A minimal Mago–Y14
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heterodimer containing only the RBD of Y14 (Mago–Y14DNDC) is
able to interact with full-length PYM (Fig 1A, lane 2). Guided by
sequence alignments, we tested C-terminally truncated fragments
of PYM and observed that PYM 1–108 (data not shown) and PYM
1–58 (Fig 1A, lane 3) retain Mago–Y14-binding properties. PYM
1–58 contains the most conserved region of the protein (Fig 1B
and data not shown).

Drosophila full-length Mago, the Y14 RBD (67–154) and
the N-terminal 58 residues of PYM were coexpressed
and purified. The crystal structure of the ternary complex was
determined at 1.9 Å resolution and refined to an Rfree of 24.9%
and good stereochemistry (Table 1). It contains residues 3–35 of
PYM, residues 67–153 of the Y14 RBD and residues 4–144 of
Mago (with the exception of loops 14–19 and 38–45 that were
disordered).

PYM binds at a surface formed by both Mago and Y14
The N-terminal domain of Dm PYM binds as a small globular all-
b-domain to both Mago and Y14, capping their heterodimeriza-
tion interface (Fig 2). The structure of the Mago–Y14 heterodimer
is very similar to that reported previously in the absence of PYM
(Fribourg et al, 2003; Lau et al, 2003; Shi & Xu, 2003). Briefly,
Mago consists of an antiparallel b-sheet flanked on one side by
two long a-helices (a1 and a3) and a short one (a2). The a-helical
surface of Mago interacts with the b-sheet surface of the Y14 RBD.
More than 85% of the amino-acid residues of Mago–Y14
superpose with an overall root-mean-square deviation of less than
1.2 Å at their Ca atoms whether in the presence or absence of
PYM, and whether comparing the Drosophila (Fribourg et al,
2003; Shi & Xu, 2003) or human (Lau et al, 2003) complexes. The
largest differences in general are observed in Mago at the 14–19
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Fig 1 | The N-terminal domain of PYM is sufficient to interact with Mago–Y14. (A) Pull-down experiments in which lysates from E. coli expressing the
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loop, which is disordered in the present structure, and at the
a2-helix. The lack of major changes in the conformation of the
Mago and Y14 proteins suggests that the heterodimer acts as a
rather rigid scaffold for PYM binding.

The N-terminal region of PYM (3–35) folds with a three-stranded
b-sheet and a contiguous b-hairpin, and does not resemble other
known structures from database searches using the program DALI
(Holm & Sander, 1993). Although the crystallized construct
contains 25 additional C-terminal residues, these are disordered
in the structure and do not contribute to Mago–Y14 binding.
Sequence comparison shows the presence of a 65-residue-long
insertion at this domain boundary in the Caenorhabditis elegans
homologue (Fig 1B). Thus, the structure and sequence comparison
data define residues 1–35 as the domain of PYM that interacts
with Mago–Y14.

Specificity of recognition between PYM and Mago–Y14
PYM binds at the a-helices of Mago with extensive electrostatic
interactions and at the b2–b3 loop of Y14 with hydrophobic
interactions (Fig 3). Several solvent-mediated contacts appear to
strengthen the interaction, as at least 40 water molecules are
found at the interface.

PYM docks with positively charged residues (Arg18PYM,
Arg24PYM, Lys25PYM and Arg27PYM) to the acidic surface of the
Mago a-helices (Asp67Mago, Glu69Mago, Glu73Mago and As-
p116Mago) (Fig 3). Particularly well conserved are the interactions
contributed by the b-hairpin portion of PYM (Figs 1B,3).
Conserved residues within the b-hairpin also include amino acids
that have a structural role in constraining the fold of the hairpin by
a combination of intramolecular hydrogen bonds (Thr16PYM,
Asp20PYM and Thr22PYM) and flexible main-chain conformations
(Pro19PYM and Gly21PYM) (Fig 3).

The N-terminal domain of PYM ends with an extended stretch
that wraps around the b2–b3 loop of Y14 (Figs 2A,3). The b2–b3
loop is the most conserved part of Y14. It contributes a set of
invariant residues for heterodimerization with Mago and another set

Table 1 | Data collection and refinement statistics

Data collection statistics

Space group P43212

Cell dimensions (Å) a¼ b¼ 106.3, c¼ 58.1

X-ray source ESRF (ID29)

Resolution (Å) 30–1.9

Unique reflections 26,797

Multiplicity* 7.5 (5.3)

Completeness (%)* 99.8 (99.9)

I/s* 5.2 (2.6)

Rsym (%)* 7.2 (28.7)

Refinement statistics

Rfree (%) 24.9

Rwork (%) 23.5

Reflection in the Rfree set 1,047

Protein residues 392

Protein atoms 1,932

Water molecules 142

Calcium ions 3

f,c angles

Most favoured (%) 93.0

Additionally allowed (%) 7.0

r.m.s.d. bonds (Å) 0.003

r.m.s.d. angles (deg) 1.19

*Values for the outermost resolution shell (2.0–1.9 Å) are given in parentheses.
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for hydrophobic interactions with PYM (Phe112Y14 with the aliphatic
side chain of Lys30PYM, and Gly111Y14 with Tyr33PYM; Fig 3).

Interaction between PYM and Mago–Y14 is conserved
Drosophila PYM is recognized by Mago–Y14 by means of
conserved surface residues spanning the entire interaction surface
(Fig 4A). The conservation of the interactions suggests that
formation of this trimeric complex is likely to be conserved from
Schizosaccharomyces pombe to human (none of the three
proteins is encoded by the Saccharomyces cerevisiae genome).
We tested the formation of the Homo sapiens (Hs) ternary
complex, whose components share 63, 88 and 33% sequence
identity with the corresponding Dm Y14, Mago and PYM proteins.
In pull-down experiments, untagged Hs PYM copurifies with
glutathione S-transferase (GST)–Hs Y14–Mago (Fig 4B, lane 9),
indicating that the interaction is conserved. In agreement with the
structural data, Hs PYM does not interact with either Y14 or with
Mago alone (Fig 4B, lanes 5 and 7).

PYM is a cytosolic protein with RNA-binding properties
The structural and biochemical data raise the question whether
PYM associates with Mago–Y14 in the nucleus or whether it is
a downstream interaction. Mago and Y14 are nucleocytoplasmic
shuttling proteins that localize predominantly in the nucleoplasm
and in nuclear speckles (Kataoka et al, 2000, 2001; Le Hir et al,
2001a). In contrast, PYM is detected in the cytoplasm of
Drosophila Schneider (S2) cells (Fig 5B, upper panels; Forler
et al, 2004). The subcellular localization of PYM is conserved, as
human PYM is also detected within the cytoplasm of HeLa cells
transiently expressing the protein fused to green fluorescent
protein (GFP–PYM) (Fig 5C, upper panels).

Despite its cytoplasmic localization at equilibrium, Drosophila
PYM is a shuttling protein exported from the nucleus by Crm1
(Fig 5B, lower panels; Forler et al, 2004). Crm1 is a transport
receptor of the karyopherin b (importin b-like) family implicated
in the nuclear export of a large number of proteins and whose
activity is inhibited by leptomycin B (reviewed in Strom & Weis,
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2001). When HeLa cells are treated with leptomycin B, GFP–PYM
accumulates within the nucleoplasm and the nucleolus (Fig 5C,
lower panels). This indicates that human PYM is also a shuttling
protein exported from the nucleus by Crm1. The accumulation
of human PYM within the nucleolus following leptomycin B
treatment may reflect a specific interaction with ribosomal
subunits or mislocalization due to unspecific interactions with
nucleolar components such as ribosomal RNA.

We next tested whether PYM has RNA-binding properties. We
have previously shown that recombinant Mago–Y14 heterodimers
do not exhibit general RNA-binding activity in gel shift assays
(Fribourg et al, 2003). In contrast, recombinant PYM binds RNA
directly (Fig 5D, lane 4), despite showing no sequence homology
to known RNA-binding proteins. The PYM–RNA complexes can
be supershifted when Mago–Y14 dimers are added to the
reactions (Fig 5D, lanes 5–8), indicating that PYM can bind
simultaneously to RNA and to Mago–Y14.

PYM is a component of the human NMD machinery
Analysis of the structure of the trimeric complex reveals that PYM
binding involves the direct contribution of amino-acid residues of
Mago that were previously shown to have a role in nonsense-
mediated mRNA decay. In the structure of the Drosophila
complex, Asp67Mago and Glu69Mago interact with Lys25PYM and
Arg27PYM (Fig 3). In human Mago, a double mutation of the
corresponding Asp66MagoHs and Glu68MagoHs to Arg affects NMD
(Fribourg et al, 2003). This double mutation is likely to cause
electrostatic repulsion with the positively charged residues of
PYM, suggesting a role for PYM in NMD. To test whether PYM
might be active in NMD, we used a transient transfection assay in
human cells in which degradation of a reporter mRNA is elicited
if a protein involved in NMD is tethered downstream of a stop
codon (Lykke-Andersen et al, 2001; Fribourg et al, 2003; Gehring
et al, 2003). Tethering PYM to the 30UTR of a reporter mRNA
results in its degradation as detected by northern blot analysis
(Fig 5E), indicating that PYM interacts with the components of the
NMD machinery.

Concluding remarks
The interaction between Mago–Y14 and PYM is direct and
conserved across species. It is surprising that whereas Mago–Y14
is predominantly nuclear, PYM localizes in the cytoplasm at
equilibrium. Human PYM accumulates in the nucleoplasm and
nucleolus on inhibition of the export receptor Crm1, but not in
nuclear speckles as is characteristic for Mago–Y14 localization.
Therefore, although we cannot exclude that PYM might interact
with Mago–Y14 in the nucleus, we favour a model where the
recognition is a downstream event occurring in the cytoplasm.

The molecular recognition is mediated by an intricate network
of interactions between the N-terminal domain of PYM (residues
3–35, Drosophila numbering) and both Mago and Y14, reinforcing
the view that Mago–Y14 functions as a single structural unit.
Centrally located within the PYM-interaction surface, we find
residues of Mago that were previously shown to affect NMD if
mutated (Fribourg et al, 2003). The implication from the structural
data that the PYM-interacting surface is important for NMD is
supported by tethering experiments showing degradation of an
NMD reporter when human PYM is tethered downstream of a stop
codon. Thus, PYM is a component of the NMD pathway. The
precise molecular mechanism by which PYM has a role in NMD
is an open question for further studies.

METHODS
In vitro pull-down and RNA-binding assays. Plasmids allowing
the expression of Mago and Y14 (Hs and Dm, as GST fusions or
untagged) were described previously (Le Hir et al, 2001a; Fribourg
et al, 2003). Dm Mago and Y14 67–154 were subcloned in a
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bicistronic plasmid derived from the pET Novagen series (pETMC
vector, gift from Christophe Romier). Plasmids for expressing PYM
(Dm full length and 1–58, and Hs full length) as GST fusions or
untagged were obtained by inserting the corresponding cDNAs in
pGEX (Pharmacia) or pET28c (Novagen) vectors. For GST pull-
down assays in Fig 1, proteins were coexpressed and 500 ml
lysates in binding buffer (PBS supplemented with 0.5% Triton X-
100 and 10% glycerol) were immobilized for 1 h at 4 1C on 50 ml
of packed glutathione agarose beads. For GST pull-down assays in
Fig 4B, 5 mg of GST-tagged recombinant proteins were first
immobilized on beads and then 500 ml of lysates from E. coli
expressing untagged PYM were added. Beads were washed three
times with 500 ml of binding buffer. Bound proteins were eluted
with SDS sample buffer and analysed by SDS–PAGE, followed by
Coomassie blue staining. For the RNA-binding assay shown in Fig
5A, a 77-nucleotide RNA probe was used, and binding reactions
were performed as described (Fribourg et al, 2003).
Protein purification and crystallization. For crystallization stu-
dies, Dm PYM 1–58 was coexpressed as a His-tagged protein
cleavable by Tev protease (pProEx-Htb, Life Technologies)
together with untagged Mago and Y14 67–154 (pETMC, see
above). The ternary complex was purified by Talon affinity
chromatography in 20 mM Tris–HCl (pH 7.5) and 200 mM NaCl.
After Tev protease cleavage, the complex was further purified by
size-exclusion chromatography. The Mago–Y14–PYM complex
was concentrated to 16 mg/ml and crystallized by vapour diffusion
at 18 1C in 100 mM HEPES (pH 7.5), 28% PEG 400 and 200 mM
CaCl2. Crystals appeared overnight and were optimized by
microseeding to single rod-like crystals with dimensions of
200 mm� 200 mm� 400 mm.
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Structure determination. Crystals were frozen in a liquid nitrogen
cryostream and diffracted to 1.9 Å resolution using synchrotron
radiation at ESRF (Grenoble). Data processing was carried out
with MOSFLM (CCP4, 1994). The data statistics are shown in
Table 1. Phasing was performed using the program AMoRe (CCP4,
1994) and the structure of the Dm Mago–Y14 binary complex
(Fribourg et al, 2003) as the search model. The model was built
with the program O (Jones et al, 1991) and refined with CNS
(Brünger et al, 1998) to an Rfree of 24.9% and an Rfactor of 23.5%
with good stereochemistry. The model statistics are shown in
Table 1. The model includes three calcium ions (from the
crystallization medium) that are involved in crystal contacts. An
alternate conformation is detected for the side chain of Arg109Y14.
Cellular localization. Antibodies recognizing Dm PYM were
raised in rats immunized with the recombinant protein expressed
in E. coli as a GST fusion. The localization of the endogenous
protein was determined by indirect immunofluorescence, per-
formed as described (Herold et al, 2003). For expression in human
cells, Hs PYM cDNA was cloned as an EcoRI–BglII fragment
between the EcoRI–BamHI sites of pEGFPC1 (Clontech). Lepto-
mycin B (Sigma) was dissolved in methanol and added to the cells
at a final concentration of 40 ng/ml in S2 cells and 2 ng/ml in HeLa
cells.
NMD tethering assay. NMD activity was assessed by coexpres-
sion of PYM fused to the lN peptide together with a b-globin-
derived reporter mRNA harbouring five boxB sites (high-affinity
lN-peptide-binding sites) in the 30UTR of the reporter as described
(Gehring et al, 2003). The lN peptide was fused N-terminally to
Y14, but C-terminally to PYM. Indeed, PYM protein fused N-
terminally to the lN peptide was inactive in tethering assays.
Transient transfections in HeLa cells, RNA extractions, and
northern and western blot analysis were performed as described
before (Fribourg et al, 2003).
Coordinates. The atomic coordinates and structure factors have
been deposited with the Protein Data Bank (accession code 1RK8).
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